TZWorks® USB Storage Parser
(usp) Users Guide

Copyright © TZWorks LLC
www.tzworks.com

Contact Info: info@tzworks.com
Document applies to v0.80 of usp
Updated: Apr 25, 2025

Abstract

usp is a standalone, command-line tool used to extract U
artifacts from Windows operating system. The sources of
the artifacts include the registry hives, setup API logs and
event logs. It can analyze a live Windows machine or
process discrete artifacts collected from another machine
in an off-line manner

http://www.tzworks.net/
mailto:info@tzworks.net

Table of Contents

1 INTEFOUCTION ittt ettt e b e s b e sae e sat e et e et e e bt e beesbeesaeesateenbeebeenneesane e 2
2 Which Windows artifacts are USEdcceeiieriiiiiiiieieeereere ettt sttt s e 3
2.1 0T o 1Y 2T Yo 1y Al I - 2 PRSP 5
2.2 EVEINT LOES ettt nnnannnan 5
23 Other data that is aVailable........co ittt 7

3 OVEINVIEW OF the OPTIONS ..oveiiiiie et e e e et e e e et e e e e eabe e e e e e nrteeeeeabaeeeennranas 7
3.1 Processing USB Artifacts from a Live Windows SyStE€M........ccueeieiiiieeiiiiiee e e e 8
3.2 Handling the primary and backup NIVEScoiiiiiiiiee e e 10
3.3 Handling Volume Shadows from a Live SYyStemcccccviiiiiiiii it 10
3.4 Processing USB Artifacts from a ‘dd’ image of an NTFS disKcccccvevvviiiiiiiciieneciiee e, 11
3.5 Processing USB Artifacts from a ‘dd’ image of an NTFS volume.........cccceveveiieeeicciee e, 13
3.6 Processing USB Artifacts off-line from extracted componentsccccoceeeeecieeeeccieecccciiee e, 14
3.6.1 Specifying separate artifacts.......ccccccciiei e e 14
3.6.2 Specifying a folder of artifactscoccuiiiiiciiii 15

3.7 Processing USB Artifacts from an externally mounted drive........cccceeecieiiicciee e, 16
3.8 Pulling USB Artifacts from a Monolithic VMWare NTFS image.cccccecveeeeviiee e, 16

4 SUMMANY Of @Il OPLIONS......eiiii e et e e e et e e e e aba e e e e abaeeeeaasbeeeeansseeesanseaeenan 17
5 Authentication and the LICENSE File.......eoiiiiiiiiie ettt s 20
5.1 Limited versus Demo versus Full in the tool’s OUtPULt BaNNEr........cceeeeeciieeeeciieeeecieee e ecieee e 21

B CONCIUSIONS ..ottt st sttt e b e s bt e s bt e st e sab e e bt e bt e beesbeesmeesateenneenneenreesanenas 21
T REFEIENCES ...ttt et e b e bt she e st st e b e bt e b e s be e sae e et e e n e e b e e nreenane e 21

Copyright © TZWorks LLC Apr 25, 2025 Page 1

TZWorks® USB Storage Parser (usp) Users
Guide

Copyright © TZWorks LLC
Webpage: http://www.tzworks.com/prototype page.php?proto id=13
Contact Information: info@tzworks.com

1 Introduction

usp is short for USB Storage (USBSTOR) Parser. It is a command line tool that can be scripted to work
with other tools. It automates various manual techniques for extracting and analyzing different registry
entries and Windows log files in order to pull together a report that documents the USB activity on a
Windows computer. The report displays a summary of the USB device, timestamps of when the device
was initially plugged, last time the device was plugged in, the serial number of the device, and various
other metadata.

There are a number of use-cases that the Windows version of usp handles. For example, the tool can
process USB artifacts from: (a) a live Windows system, ranging from Windows XP up to Win10, (b) an
image of a Windows hard drive, (c) extracted registry hives and setupapi logs, (d) an external system

drive that was mounted for analysis, and (e) a monolithic VMWare virtual disk file.

usp has been built so that it relies only on the standard operating system libraries. This means it does
not require any extra libraries (DLLs) to be installed on the system for it to run. For any critical parsing,
usp uses its own internal algorithms. For registry reading and traversals, it doesn’t make use of the
Windows API calls. Therefore, if the system you are analyzing has been compromised, usp should be
able to extract what it needs and process the results without losing data. Since there is no installer for
usp, it is easy to run directly from a USB stick or other portable device.

While usp gathers USB device statistics on Windows operating systems, it can be run on other operating
systems in a limited mode. If one wishes to analyze Windows forensic artifacts off-line on Linux or Mac
0S-X, there is a compiled version of usp to handle these operating systems as well.

usp can be downloaded from http://www.tzworks.com/prototype page.php?proto id=13. See the

licensing agreement on the website for more details.

Copyright © TZWorks LLC Apr 25, 2025 Page 2

http://www.tzworks.net/prototype_page.php?proto_id=13
mailto:info@tzworks.net
http://www.tzworks.net/prototype_page.php?proto_id=13

2 Which Windows artifacts are used

There are currently five different sources of Windows artifacts that can be used for usp to completely
process USB device statistics. These include: (a) the setupAPI log(s), (b) the system hive, (c) the software
hive, (d) the user registry hives, (e) the AmCache hive and (f) certain event logs.

The setupAPI log can be one or more files that identifies, amongst other things, when a USB device was
initially plugged in. The system hive identifies which USB devices were registered with the Windows
plug and play manager. Windows makes use of a number of registry keys to allow it to identify that
same device quickly the next time it is plugged in. The software hive provides some additional
information for those USB devices identified by the system hive. The user hives are used to associate
which user account was logged on when the USB device was plugged in. This artifact can help identify
when a user last plugged in the device. With the advent of the Windows 10 Creators Update, the
amcache now has additional information when a device was registered, via the InventoryDevicePnp
subkey. Finally, various event logs are also examined for USB artifacts and included in the results. As
more research in Windows USB forensics becomes available, it can easily be incorporated into usp to
enhance its reporting due to the extensible nature of its architecture.

USB Storage (USBSTOR) Parser
_— — USB ID/name
l T““"d""— *» Vendor
] ntuser.dat & EToduce
J * Volume
System Hive ‘ USB Sertal Nuiib
| ! erial Number
e —)
Software Hive USp
. Timestamps
Amcache Hive * |nitial plugin
* Lastacct plugin
SetupAPI Logs * Registry key times
' * Event log entries
Event Logs =

When mapping the output to these artifacts, it can be confusing. Therefore, the following graphic
shows which artifacts are represented in each of the two main output formats: (a) unstructured
(long/verbose) output and (b) CSV output:

Copyright © TZWorks LLC Apr 25, 2025 Page 3

Mapping of timestamps extracted from usp and where they are outputted

1. [Pulls date from subkeys that are 2 levels deeper in “USB” key
"HKLM\SYSTEM\CurrentControlSet\Enum\USB\?*\?*\Service":

2. |Pulls date from the subkeys that are 2 levels deeper than “USBSTOR"”
"HKLM\SYSTEM\CurrantControlSet\Enum\USBSTOR\?*\:

3. [Pulls date from the subkeys of parent key {52f56307-b6bf-11d0-34F2-00=0c31efb3b):
"HKLM\SYSTEM\CurrentControlSet\Control\DeviceClasses\{GUID for disk device interfaces}”

4. |Pulls date from the subkeys of parent key [53f5630d-b6bf-11d0-94f2-00a0cS1efbb}:
"HKLM\SYSTEM\CurrentControlSet\Control\DeviceClasses\{GUID for volume device interfaces}”

5. JPulls date from SetupAPI log

6. [Pulls explicit date in value from the Property ID 0x0064 in “USBSTOR” [Equates to InstallDate]
"HKLM\SYSTEM\CurrentControlSet\Enum\USBSTOR\?*\>*\Properties\{83da6326-9726-4088-9453-219237573b29)\0064\ -
7. JPulls explicit date in value from the Property ID 0x0066 in “USBSTOR” [Equates to LastArrivalDate]
"HKLM\SYSTEM\CurrentControlSet\Enum\USBSTOR\?*\>*\Properties\{83da6326-9725-4082-9453-21923f573b25}\ 0066\ "
8. [Pulls explicit date in value from the Property ID 0x0067 in “USBSTOR” [Equates to LastRemovalDate]
"HKLM\SYSTEM\CurrantControlSet\Enum\USBSTOR\?*\?*\Properties\{83da6326-97256-4088-9453-21923f573b25)\0067\"
9. |Pulls date from the subkeys of parent shown, using the appropriate ntuser.dat hive
"NTUSER.DAT\Software\Microsoft\Windows\CurrentVersion\\Explorer\MountPoints2”

10. | Pulls date(s) and maps volume serial numbers to devices, using the Software hive
“HKLM\Software\Microsoft\Windows NT\ CurrentVersion\ EMDMgmt\?**

11. | Pulls date(s) from AmCache hive [inventoryDevicePnp subkey]

12. {Pulls date(s) and event specific data for USB devices

(DF} Microsoft-Windows-Drivers-UserMode%40perational.evix [IDs 2010, 2102 — other event IDs are redundant]
(KP) Microsoft-Windows-Kernel-PnP%4Configuration.evtx [IDs 410, 420..]
{PD) Microsoft-Windows-Partition%4Diagnostic.evtx [ID 1006}
(SY) System.evtx (IDs 20001, 20002, 20003)
Ly DEVECE NOGRE: Kingston DataTraveler G3 USB Device
1 | vid/pid key update [UTC]: 81/23/2018 23:22:18.329
2 Jven/prad/rev key update [UTC]: B1/23/2018 23:22:18.329
3 J Dizk Device update [UTC]: 01/23/2018 23:22:18.331
4 | veluse Device update [UTC): ©81/23/2018 23:22:18.343
S | SetupAPI Log dates: [Locel] 81/13/2018 16:22:32.785
12 | Eventlog dates: [UTC) EVTX_INS_DF967526: @1/23/2018 23:22:20.650
EVTX_REM_DF#9676681 ©1/23/2018 23:23:35,636
% & | DEVPKEY InstallDate [UTC]: 01/13/2018 21:22:32.643
7 | DEVPREY LastarrivalDate [UTC): 01/23/2018 23:22:18.234 Unstructured
8 | DEVPKEY LastRemovalData [UTC]: 81/23/2018 23:23:35.3%6
Instance ID/Serial #: 90120810891 £950152d093140 (long) output
9 J Acct that mounted vol: tzlabs accr, on 91/23/2018 23:22:20.608 [UTC)
18 J Vol serial/name/last time(s): F9552-1ef2/test : 81/25/2018 23:22:18.521 [uTC]
11 | InventoryDevicePnp [UTC): 81/13/2018 21:23:45.134
—| 1 5 3 4 9 6,7,8 10 11 12 |
| — l‘-‘-‘l_l_\‘ * r - o - .1 s A L1 - o - .
Idevice name | vid/pid| installl disk dev[vol dev |vol namgl userslgroperty dates|Readvboost lAmcache |EVTxlog |
CSV output
. J

As one can see there are various sources for timestamp data, and some of them are redundant. The
first source, which is common across all versions of the Windows operating systems, are the registry last
modification times for their respective subkey path. One can also use the SetupAPI log(s) to extract
installation time. In Windows 7, the device installation date property identifier should be present as
well as the EMDMgmt timestamp(s). In Windows 8, the device last arrival/removal dates property
identifiers may also be present. While it may seem redundant to display similar ‘event type’
timestamps, the extra data allows the investigator to corroborate when certain actions took place, and
thus, increase the confidence the behavior suggested by the data was not influenced by anti-forensics
techniques. Conversely, if there are inconsistent timestamps, then it tells the investigator that a closer
look is warranted.

Copyright © TZWorks LLC Apr 25, 2025 Page 4

2.1 ReadyBoost Log

In the figure above, item 10 is the ReadyBoost artifact. This data initially became available in Vista. As,
background, whenever a new drive is connected to a windows box, the operating system will test that

drive's read and write speed by creating a file on that drive and then deleting it. This result is logged in

the ReadyBoost log. The timestamp associated with this entry was the time of the last test performed.

In addition, the name of the disk is present and in some cases the size of the disk.

2.2 EventLogs

Added with the version 0.55 of usp is the ability to parse event log data from evtx type logs and
integrate it with the USB results collected from the registry hives and setupapi logs. Since this is a new
feature, it is still experimental in nature. Currently, up to four log files are can be analyzed: (a)
System.evtx, (b) Microsoft-Windows-DriverFrameworks-UserMode%40perational.evtx, (c) Microsoft-
Windows-Kernel-PnP%4Configuration.evtx, and (d) Microsoft-Windows-Partition%4Diagnostic.evtx.

From the logs listed above, certain events are enumerated and categorized into 3 areas: (a) when the
USB device was inserted, (b) when the USB device was removed, and (c) when the USB device
driver/service was deleted. Additional data can be extracted with the Microsoft-Windows-
Partition%4Diagnostic.evtx log, such as the, partition table and volume boot record of the USB device (if
present).

Since event log data can be noisy, in the sense, that many events can be recorded during one of the
categories above (insert, remove or delete), the usp tool will collate clusters of events within a set
interval and report each cluster as a significant event. Even though this clustering is done for reporting
purposes, the tool provides traceability down to the record numbers used during a cluster operation, so
the analyst can go back to a particular event log and look up the specific event record, if desired.

The following shorthand notation is used when reporting event log artifacts:

a. One of the following prefixes:
e INS (Insert USB device)
e REM (Remove USB device),
e DEL (Delete USB device).
b. The above prefix is then followed by an underscore, followed by a two letter code:
e DF (DriverFrameworks = Microsoft-Windows-DriverFrameworks-UserMode%40perational.evtx),
o KP (Kernel PnP = Microsoft-Windows-Kernel-PnP%4Configuration.evtx),
e PD (Partition Diags = Microsoft-Windows-Partition%4Diagnostic.evtx),
o SY (System.evtx)
c. Finally the record number is annotated.

Below is some output from two reports using a couple of different event logs.
The first example uses the -csvi2t format. In this case, usp breaks out each of the categorized events
(insert, remove, and delete) into clusters and creates a separate row entry for each one. The overall

Copyright © TZWorks LLC Apr 25, 2025 Page 5

output merges the USB event log data with the registry hive and setupapi data. The traceability of

which event record goes with the csv line output is annotated in the ‘extra’ column. The event log data

in the example uses the syntax:
INS_KP#423, for insertion of device taken from record# 423 in the Kernel Pnp (Microsoft-Windows-
Kernel-PnP%4Configuration.evtx) event log,
REM_PD#286813, for removal of device taken from record #286813 in the Partition Diags
(Microsoft-Windows-Partition%4Diagnostic.evtx) event log

Etc.

omdline: <hlelist> .. | usptd -pipe csvi2t -par_datetime -cov_separator " baseld

{implied cmd: -event_res 2] EVTX data

date/vowe MACB source type short :!J N oxtra

10/16/2017 16:04:04337 € EVIX Inserad |evis: Comaeltne) Gonmric Flash Disk USB Device @ ' | Clustered records: INS_ KPS0 INS_KPR425. INS_KH
1/16/2017 180404340 8 REG Installed [oystam: YenProdDevaceProdky Ganenc Flagh Disk USE Devike was

1/16/2017 16:04:04.075 L nEG Inserted Atter Reboot |witeen: YolDuvic Ganenic Flash Disk UAB Davice -{

01/IWVI8 0014595 O SLTURAPR| Seheduled Uninstallad |stupss() Garaeic Flash Dish USH Device v

0 AN20IB 0214005 O VT tnsertnd (avis: Droverf ramweworks) Genwearc Flash Disk L3R ODuvice f Clustered records; INS_OF#2; INS_POVIRAEL2
01/18/2018 03:15:08, 769 L~ 132 Removed (evix: PartitionDisgs) Gacscic 7lash Disk USH Device vA & Clustered cecords: REM_SOMBIN1L; REM_SOM840)
OI/I8/2008 0342370 MO NEG Last Insert (systems Vid/Pud teme); Lastir Generic Flavh Disk USE Device

01/18/2018 03:03:42.000 C EVTX Inserted {evta: DerverFrameworks) Gereric Flash Disk USB Device :! 4 Clustered records: INS_DFN11A INS_FORB0200
0L/18/2018 04:0%:43.080 A, REG User Acct Moonted {ntuser: MountedDes Generit Flash Disk USE Device v

01718/2018 04:06:47. 168 C EVTX Inserted |evtx: PartitionDvags) Ganeric Flash Disk US8 Device ? Clustered records: INS_PORBE0L; INS_PORES02
01/18/2018 040847186 .C EVTX Removed (ovix: DriverFrameworks) Ganeric Flash Disk USB Device Clusteced rocords: REM_DFN136; REM_PO#286203
01/18720LE 02:05:53. 17% C REG LastRemoval (system: DEVPKEY LastRom Generic Flash Dick USB Oevice wid,

To see more detail about the device, and only the cluster event log timestamps, one can use the -v (or
verbose) option. This option shows more clearly the other event log data when it comes to the partition
table and volume boot record for the device, if it was available. This data shows the volume offset,
number of bytes in the volume, disk signature, volume signature, and other disk/volume related data.

usp - full ver: 0.55; C
License #1d38e7cc1423070
run time: 02/14/2018 05:39
“emdling; <fFilelist> ... |
[implied cnd: -event_res 2
us8 Davice: 0
Device name:

Service:

vid/pid key u danp&:
ven/prod/rev key u
Disk oevice update [uUTC]:
volume Device update [uTC
SetupaPl Log dates: [Loca
Eventlog dates: [UTc):

USH

DEVPXEY Installpate [uTc
DEVPKEY Lastarrivaloate
DEVPKEY LastRemovalDare
Instance 10/Serfal #:
container 1D:

volume 1D:

pisk 10!

vendor /product :
US8 hub/port used:

Partition table:
volume boot record data:

te [uTc]:

fi

fire:

ight (c) TZworks LLC

s ;uth.micand for business use and registered to TZworks LLC
1
usp

]

“pipe -v -pair_datetime -basel0”

Generic Flash
disk [volume]
01/16/2018 04:05:42.578
10/16/2017 16:04:04, 341
10/16/2017 16:04:04, 349
10/16/2017 16:04:04,375
120008 22-10-45 952]
EVIX_INS _XP#423: 10/
EVICINS_PON284812:
EVICREM _POS284813:
[EVTX_INS _PO#286200:
LEVIDCINS _POS286201 :
EVIXC_REM_POS286203: 01/18/2018 04:06:
L1 €Tt O R

01/18/2018 04:05:42.578
01/18/2018 04:06:53.176 [ot
8680c0e7 &0
155chC58-4fdd-59d0-9d5¢c-521 99915
Sdad7834-avef-11e7-8aab-000¢29731
Sdad7832-a7ef-11e7-83ab-000c297 3151

pisk USe Device [Mass Storage] [TZwWORKS)

16/2017 16:04:04.
01/18/2018 03:11:
01/18/2018 03:15:
01/18/2018 04:05:
01/18/2018 04:06:

337 urc]

43.65¢ UTC
46.769 uTC
42,603 UTC
47.168 uUTC
47.186 uTC

r dates available: only showing the lastest one
dates available: only showing the lastest one

UTC); Host: TZLABS-PCOD4; MachineInfo: windows;6.1.workstation,sp.1.0;6.1.7601;64

TZwoRxs [€:)
10/16/2017 16:04:06.517 EVTX data
<none found>
058f
6387
8.07
gener ic/flash_disk
3/ 6
- 4 0 . Lierr-1
\.-on:b}(lg_o fser:4980736; num_bytes:8173912064; disk_sig:2es7-c29a;vol_type:fatid2
sysid: n!z;sector_size(bytes):512:dusur_;iu(bytesg:lm:medh:hard_d'sk:pu-l

Copyright © TZWorks LLC

Apr 25, 2025

Page 6

2.3 Other data that is available

Aside from the timestamp data, usp displays other metadata about the USB device. Below is an
example of this other data, with the timestamp data removed, to focus on the other output.

Device name: Kingston DataTraveler G3 USB Device

Instance ID/Serial #: 001ccPec2f41¢c09145¢2072680

Driver: {4d36e967-e325-11ce-bfc1-08002be10318}\0008
Volume ID: 4eef2083-1afl-11e3-be77-24fd52334df7
Disk ID: 4eef2080-1afl-11le3-be77-241fd52334df7
Volume name: XFER

Parent ID Prefix: <none found>

Vendor ID: 0930

Product ID: 6544

Revision: 1.00

Vendor/preoduct kingston/datatraveler_g3

USB hub/port used: e3/e1

The instance ID (or serial number), is one of the main pieces of data that links many of the various
artifacts together. The volume identifier links the data in the system hive to the USB data in the user
hive to correlate which user account mounted the USB device. The parent prefix identifier is more
useful in the pre-Vista operating systems to provide linkages between data. The vendor ID, product ID,
revision and product name are pulled directly from the registry information. Finally, the USB hub/port
combination is extracted to record where the device was plugged into.

3 Overview of the options

There are a number of use-cases that usp was designed for. Below is a breakout listing which binaries
are compatible with each use-case:

o Live Windows processing (Win32/64 binaries)

. Off-line processing of a ‘dd’ image of a disk (Win32/64, Linux32/64 and Mac 0S-X 32/64
binaries)

. Off-line processing of extracted registry hives and setupAPI logs (Win32/64, Linux32/64 and
Mac OS-X 32/64 binaries)

. Processing an external mounted drive (Win32/64 binaries)

. Processing a monolithic VMWare NTFS formatted virtual disk (Win32/64, Linux32/64 and

Mac OS-X 32/64 binaries)

The various options above can be seen from the menu below. The rest of this paper discusses each of
the use-cases in more depth and is diagramed with examples.

Copyright © TZWorks LLC Apr 25, 2025 Page 7

2. Administrator: Windows PowerShell

3.1 Processing USB Artifacts from a Live Windows System

While the most difficult to implement, this use-case is the easiest to use. To run usp on a live Windows
system, use the -livesys option to tell it to analyze the currently running registry hives and setupAP! logs.

dAdmm.slrator: Command Promptj (=2t

Ndunpouspb4 vesys inc_regback

Having administrator’s access is required, since usp will need to take a snapshot of the appropriate hives
on disk and start analyzing them. All output options are text and can be very large, depending on how
many USB devices were plugged into the computer over the life of the system. Therefore, it is
recommended to redirect the output to a file and analyze the output with a text editor.

The -v option is for verbose output, where each device found will contain multiple lines of data found for
that device. The alternative format is one line per device, where the data is more useful to view in a
spreadsheet. The -show_other_times is tells usp to do any translation of timestamps embedded in
various GUID data, as well as any additional timestamps that may have been found.

Copyright © TZWorks LLC Apr 25, 2025 Page 8

The -show_files_used identifies which artifact contributed data to the device. The -inc_regback tells usp to
also include the backup registry hives in the analysis.

If desiring to add event log files to the usp results, one would need to add the option -use_eventlogs. This
will cause usp to look for and parse the following logs: (a) System.evtx, (b) Microsoft-Windows-
DriverFrameworks-UserMode%40perational.evtx, (c) Microsoft-Windows-Kernel-
PnP%4Configuration.evtx, and (d) Microsoft-Windows-Partition%4Diagnostic.evtx.

"cmdTine: usp64 -Tivesys -inc_regback -v -show_other_times -show_fiTes_used” é

USB Device: 0
Device name: Imation Pivot USB Device
Service: disk [usbstor]

vid/pid key update [UTC]: 08/17/2016 07:41:25.418

ven/prod/rev key update [UTC]: 08/17/2016 07:41:25.442

Disk Device update [UTC]: 08/11/2016 20:10:36.605

volume Device update [UTC]: 08/11/2016 20:10:36.615

SetupAPI Log dates: [Local] [Install: 08/11/2016 15:58:49.543; 08/11/2016 15:58:49.919;
DEVPKEY InstallDate [UTC]: 08/11/2016 19:58:50.508; 08/11/2016 19:58:49.919

Instance ID/Serial #:
Container ID:
volume ID:

Embedded time in volume ID:
Embedded MAC in volume ID:

Disk ID:

Embedded time in Disk ID:
Embedded MAC in Disk ID:
volume name:

volume name update [UTC]:
Parent ID Prefix:

vendor ID:

Product ID:

Revision:

vendor /product:

USB hub/port used:

Acct that mounted vol:
System hive details:
Software hive details:
ntuser hive details:
SetupAPI log details:

USB Device: 1
Device name:
Servige:

3610a4a42caiss&o
db16f407-665F-519d-beds8-eb2a02b37ef1
13a6e427-5f16-11e6-adc9-00a0c6000021
08/10/2016 16:18:30.500

00-a0-c6-00-00-21
13a6e425-5f16-11e6-adc9-00a0c6000021
08/10/2016 16:18:30.500

00-a0-c6-00-00-21

PILOT

08/11/2016 19:58:52.130

<none found>

0718

0359

1.20

imation/pivot

04/02

loan acct, on 08/11/2016 20:19:01.226 [UTC]
C:\windows\system32\config\system [10/02/2016 02:53:46.224
C:\windows\system32\config\software [10/02/2016 03:24:48.0
c:\users\loan\ntuser.dat [10/02/2016 03:24:53.056 UTC] [m
c:\windows\inf\setupapi.dev.log [md5:9b5a2467745327fc98da

WIBU - CodeMeter-Stick USB Device
disk [vmusb]

1

~

When opening the results file in notepad, a summary of the devices are listed with: device name,
various timestamps, various identifiers, volume name, account name that mounted the device, and
other miscellaneous data. The truncated diagram shows the output of the first USB device, which is
labeled an “Imation Pivot USB Device”. The key timestamps are the original install date and the account
that mounted the device, which should be the last time that user account plugged in the device. Other
useful data includes the Instance ID/serial number, which should be unique for that device. |say should,
since some vendors do not supply a unique number. However, from the empirical data, most vendors
do try to honor the USB specification and embed this data into the device’s firmware.

The second way one can output the data is to display each USB device on its own row with the various
metadata for that device as columns. To do so, one would use one of the field separated values,
whether it is -csv, for Comma Separated Values, or some other delimiter. To use a different character
for the delimiter, one can append the -csv_separator <character to use > option to the command,
where one can force the delimiter to be a pipe character, comma character or tab. Since there is an
issue that some USB device names may have a comma embedded into their name, usp tries to
substitute any commas it sees in the names to spaces. Below is an example of the default -csv option:

Copyright © TZWorks LLC Apr 25, 2025 Page 9

p - full ver: 0.24; copyrigh: (c} TZworks LLC
run time: 2013/09/30 17:01:03 [uTc
cmdline: uspéd -livesys -dateformat yyyy/mm/dd -csv

device name,vid/pid, time-utc,install, time-local, disk dev, time-utc,vol dev, t1me utc, t{ge ,vid, p1d hub
Kingston DataTrave]er Gl use oevice.ZOlz /30, 00 3 -0 28 12: 36.196,2012/03/ 1] :
Kingston DataTraveler 2.0 uUSB Device,201 3/ 17 8 22.944,2011 /
USB 2.0 USB Flash Drive US8 Device,2012/04/04, 18: 02 22, 989 2012‘04/04 14:02:22. 998, 2012/04/04, 18:
Kingston DataTraveler 2.0 uSB pevice, 2012f04 /20, 17:08:13.047,2012/04/16, 11:43:17.357,2012/04/20, 16
uS8 2.0 USe Flash Drive USB Device,2012/04/29, 00:26:31.173,2012/04/28, 20:26:31.193,2012/ 04/29 00 26 31
uss 2.0 uss fFlash orive uSs Device,2012/06/11, 20:23:40. 325 2011/09/11, 13:19:13.550,2012/06 ’
uss 2.0 use Flash Drive USB Device,2012/07/13, 14: 54 28.148, 2012'04/16 10: 32 33 529 2012
ngston DataTraveler G2 use Device,2012 0:55. 2/03, 08 658
indle Internal Storage USB Device, 2012/
xingston DataTraveler G3 USB Device,2012 / :25. 2: 0/20,
kingston Datatraveler G3 usB Device,2012 / . 20 10/ 20, 979 2012/10 ‘20,
DataTraveler G3 uUsB 00vi<e.2012 /26 5 /26 .403,2012/10/26, 12:40:58.
DataTraveler G3 uss pevice,b2012 / 144, / .436.2012/11!12. 18:00:44.
DataTraveler G3 USB Device,2012 / 6. / y 17:04:36,233,2012/11/29, 14:54:06. 50
DataTraveler GI usse Device.2012 6 11, 17:33:17.852,2012/12/06, 14:37:40.2
14. 12 11 55 938 2013/01’14 17 11 57.654,,
17:13:54.723
29 141

Using the CSV option with -csv_separator “|” syntax, one can output the data in CSV format using a pipe
delimiter. The advantage of using the pipes as a delimiter is that pipes do not conflict with the USB
names.

bsp - full ver: 0.24; Copyright (c) TZworks LLC

License is authenticated and registered to David Tomczak; TZworks, LLC
run time: 10/08/2013 17:38:36 [UTC)

cmdline: usp -livesys -csv -csv_separator |

device name|vid/pid| time-utc|install| time-local|disk dev| time-utc)vol dev| time-utclt EIvidlpidlhublpor t | vendor,
GENERIC USB Mass Storage USB Devicel| |09/21/2011| 20:45:28.142109/22/2011| 00:45:28,922109/22/2011} 00:45:29.328|
WO SO000AAV External USB Device|03/30/2012] 00:14:39,798109/11/2011] 11:53:48. 857!02/11 2012 13:01:58.8011/] i

WDC WO16 00)5-00MHBO US8 Device|03/30/2012] 00:14:39.798|02/18/2012| 11:15:50,229/02/18/2012| 16:15:50,956
Maxtor oneTouch use Devicel03/30/2012| 00:14:39.798|02/19/2012] 15:01: 32 843I02/20,2012I 13:14:41,354]| |
12] 00:14:39. /98I0’/28 2012 l 12:31:36. 196!03 13/2012| 13: 0?0
0:31:11.713

3.2 Handling the primary and backup hives

When running usp to look at a system volume, one can specify the -inc_regback option, to have usp
process both the primary and backup hives in one report. This will result in usp trying to merge device
artifacts with the same serial numbers and identifiable data.

3.3 Handling Volume Shadows from a Live System

Volume Shadow Copies of the system drive also contain artifacts necessary to perform USB analysis
from a historical standpoint. By using the option -vss <index of the volume shadow copy>, usp can
automatically pull the required hives and log data to generate a report on USB historical activity.
Volume Shadow copies, as is discussed here, only applies to Windows Vista up to Win10. It does not
apply to Windows XP.

To determine which indexes are available from the various Volume Shadows, one can use the Windows
built-in utility vssadmin, as follows:

Copyright © TZWorks LLC Apr 25, 2025 Page 10

vssadmin list shadows

-

Administrator: Command Prompt

adnin list

hadows
« Shadow Copy Service

2005

i \dunpdus
dnin 1.1 1
2001

wdnrinistrative command

<C)> Copyright Micresoft Corp.

wontents of shadow copy 5
3
Copy 1D:

1 Volume:

shadow copie

{1ac

wopy Vo lume:

loaner
PC
Softw
ibleWriters
tent, Client

at ing Machine:
schine: loaner

icrocoft

osoft Software Shad
e ibleVUrit
Client

rsistent, acces

line tool

‘dca2lll

M

Bbebibet

vadowCo py1

Differvential. Au

Differential. Aut

ontent of shadow copy zet ID (c4838Bebf
hadow

py 1D

1 Uolume: <1

Contain copie at creation
(?799¢c19al-B6eB-46a6
T >Uo lu
'GLOBR
loaner-PC
lnanger P

She
2~bchd-806ebfbeb 7632
Shadow Copy Vo lume: fiskVo lumeShadowCopy3
Originating Machine

Servig sine s

To filter much of the unnecessary data to get to the index numbers, one can do the following:

vssadmin list shadows | find /i "volumeshadowcopy"

p
Administrator: Command Prompt

list
Copy
Copy
Copy
Copy
Copy
Copy
Copy

C:\dumpovssadmin
Shadow
Shadow
Shadow

shadows | find /i “"volumeshadowcopy"
Uolume : \\?\GLOBALROOT\Device\HarddiskUolumeShadowCopyl
Uolume: \\?\GLOBALROOT\Device\HarddiskUolumeShadowCopy2
Uolume : \\?\GLOBALROOT\Device\HarddiskUolumeShadowCopy3
Uolume : \\7?\GLOBALROOT\Device\HarddiskVUolumeShadowCopy4

Shadow
Shadow
Shadow
Shadow

Uolume : \\?\GLOBALROOT\Device\HarddiskUolumeShadowCopy5
Uolume: \\?\GLOBALROOT\Device\HarddiskUolumeShadowCopyb
Uolume : \\?\GLOBALROOT\Device\HarddiskVUolumeShadowCopy?

This filters only the pertinent data needed to tell one which indexes are available for Volume Shadow
copies. The number after the word HarddiskvolumeShadowCopy is the index that is used to pass as an
argument into the -vss option.

3.4 Processing USB Artifacts from a ‘dd’ image of an NTFS disk

This use-case is broken up into 2 sections. The first addresses the situation if one acquires an image of
an entire hard drive. The second addresses the situation if one images only a volume within a disk. Both

Copyright © TZWorks LLC Apr 25, 2025 Page 11

cases assume the acquisition of the image was a bit-for-bit copy, without using compression or some
other proprietary format to store the final image.

For the first situation, one needs to find where the system volume starts. Specifically, one needs to
identify to the usp tool what offset in bytes, from the start of the image, is the location of the system
volume. The options that are used in usp are —image <filename of image> and —offset <numeric value
of start of volume>. Both options need to be supplied for this to work.

To aid the user in doing this quickly, one can use usp in a two-step procedure. For the first step, usp will
accept just the first option —image <filename of image> by itself, and then will analyze the image to see
if there are any NTFS volumes on it. If it finds one or more, it will list their respective offsets. An
example is shown below. The image is from a 40G drive that has one volume formatted as NTFS. By
supplying just the image filename, usp displays to the user the offset of the NTFS volume it found, and
then suggests what options to plug into the command line.

C:\dump>us image W:\wd\public\image.drive.samples\ir
usp <U R parser) ver: 0.15; Copyright {(c) TZUWorks

volume offset [Bx7eB8 1 : ntfs

luse option [—image "W:\wd\public\image.drive.samples\images\wd.48g.ing.B801" —-offset Bx7eBB]

After the volume offset has been discovered, one can then proceed to the second step and supply this
offset into the option —offset <numerical value of start of volume> to get usp to start scanning for the
proper files it needs and outputting any USB statistics. Below is the final command based on the data
provided by usp for the volume’s offset. The output is redirected to a file, and the file is then opened in
notepad.

Looking at the output, one can see that there is a Parent ID Prefix present. This means that the

operating system of the volume analyzed is pre-Vista, and in this case happens to be Windows XP. The
first device listed is a ‘SanDisk U3 Cruzer Micro USB’ device, and from the data, was initially plugged in
on 5/09/08. There were three user accounts that used this same device, as shown below. From the
data, the last account to use the device was ‘normaluser’ on 07/01/09.

Copyright © TZWorks LLC Apr 25, 2025 Page 12

7wt - Notepas

File Edt Format View Hd?

USB Device: 0 _

Device name: SanDisk U3 Cruzer Micro USB Device
vid/pid key updatep‘SUTC]: 04/25/10 17:51:34.921

ven/prod/rev key update [UTC): 04/25/10 17:51:35.015

Disk Device update [UTC): 04/25/10 17:51:35.062

Orig Install date [Localtime]: 05/09/08 11:24:13.000
| Instance ID/Serial #: 00001889¢57058¢a80

-080028£10318}\0009

lig i - RSOy TS IS TTICE T
Volume ID: ebde26f0-1f26-11dd-bb6e-005056c00008
DY D: <none found>

volume name:):

Parent ID Prefix: 781467198780
v Jele AU U/o4
Product 10: 5406
Revision: 4.05

e et TETT T T Ty

Acct that mounted vol: admin acct, on 05/23/08 04:13:16.875 [UTC)
Acct that mounted vol: dell acct, on 05/11/08 06:54:46.625 [UTC)

Acct that mounted vol: normaluser acct, on 07/01/09 02:59:50.500 [UTC)

v R

h Dr1

3.5 Processing USB Artifacts from a ‘dd’ image of an NTFS volume

This is the second type of situation that can be encountered with a ‘dd’ image. This is when the image
is just of a volume versus the entire disk. For this case, the —offset <#> option does not need to be
supplied and is assumed to be zero. Therefore, only the —image <filename of image> needs to be
supplied. Below is usp processing an image taken from a Windows XP volume supplied by the SANS
forensics 408 course. The example below is running usp in Ubuntu Linux. Again, one sees the Parent
Prefix ID is present, confirming it is a pre-Vista image. The install timestamp, serial number of the device
as well as the user account/time stamp that plugged the device into the computer is present.

Copyright © TZWorks LLC Apr 25, 2025 Page 13

e 1.

testbox@testboxpc ~/workarea/dev/usp/linux_vslick/package

testbox@testboxpc:~/workarea/devS ./usp64 -image xp_dblake.dd

USB Device: ©
Device name: USB Device
vid/pid key update [UTC]: 06/30/07 22:41:57.208
ven/prod/rev key update [UTC]: 06/30/07 22:42:07.032
Disk Device update [UTC]: 06/30/07 22:41:57.528

me 1) s - * BN
Orig Install date [Localtime]: 06/30/07 18:41:57.000
Instance ID/Serial #: 080909524d94e580

. . - -080028E10318}\0001
Volume ID: 49230965-275a-11dc-a06¢-800c0c446d64
Disk ID: <none found>
0 - oungd

e ”
Product ID:
Revision:

donald blake acct, on 06/30/07 22:42:10.026 [UTC]

USB Device: 1

Device name: OLYMPUS uB810/S810 USB Device
vid/pid key update [UTC]: 01/14/09 19:03:54.505
ven/prod/rev key update [UTC]: 01/14/09 19:03:58.030

Disk Device update [UTC]: <none found>

Volume Device update [UTC]: 01/14/09 19:04:00.023

Oric "astall Aate [1~ce'time]: °1/14709 14:°°-54 ARP

3.6 Processing USB Artifacts off-line from extracted components

This is a situation where you have acquired a number of artifacts extracted from a Windows system, but
don’t have an image of the drive or volume. usp can handle this, if the user explicitly identifies which
artifact is a system hive, which is a user hive, etc.

3.6.1 Specifying separate artifacts

If you only want to process a few artifacts and not an entire folder of files, one can invoke usp with

the -sys <system hive> -user “<userl hive> | <user2 hive> | ... | <user# hive>” -setupapi <setupAPI
log>, etc, options. The syntax allows for one to include multiple hives of the same type by separating
each similar hive with a pipe character. Below is an example of specifying discrete files and redirecting
the report to the file named ‘usp.txt’

Administrator: Command Prompt I LM ML SemE T

N

C:\dump\usptestousp —sys system —user ntuser.dat —-setupapi setupapi.dev.log > usp.txt

C:\dump\usptestonotepad usp.txt

Copyright © TZWorks LLC Apr 25, 2025 Page 14

3.6.2 Specifying a folder of artifacts

Since usp can process many artifact files related to a USB devices used on a computer, sometimes it is
just easier to put all the files require analyzing into a separate subdirectory and scripting the use of usp
to process these files. Below is an example of one way to do this.

To collect the requisite files, one can use the dup utility from our website
(https://tzworks.com/prototype_page.php?proto_id=37). This utility allows one to copy any file, or
group of files from a live box or ‘dd’ image. This is especially handy for copying files when the operating
system locks down the files, disallowing one to have even read access. Below we use dup to copy a
group of files, including the registry hives, setupapi logs, and event logs.

EX Administrator: Command Prompt

C:sdump?>dupbd —copygroup —pull evtlogs —pull reghives —out c:“dumpstestcasel

The copied files are placed in the testcasel subdirectory. The dup -copygroup option allows one to pull
all the registry hives, including the user hives and system hives, as well as all the event logs. While it
pulls more data than we need, it allows one to quickly grab the requisite artifact files needed for usp to
process the USB devices that were plugged into this machine.

Organize = Include in library = §= = i @

4 testcasel i Mame
a Users || software
Default | SOFTWARE.LOG
tzlabs || SOFTWARE.LOG1
4 | Windows || SOFTWARE.LOGZ
4 AppCompat || SOFTWARE{016888c9-61
inf L || SOFTWARE{016888c9-6/
Logs [|| SOFTWARE{016888c9-6/
4 system32 || system
4 Config || SYSTEM.LOG
RegBack || SYSTEM.LOG1
LogFiles || SYSTEM.LOG2
4 winevt || SYSTEM{016888cd-6cbf
logs = a b

Now that the files are collected into a separate folder (testcasel), one can process all the artifact files
using the -pipe command, like so:

BN Administrator: Command Prompt

C:wrdir cssdumpstestecasel #bh A= | usp —pipe —csvl2t > out.cswe

The above will look at all the files starting from the subdirectory testcasel and all subsequent
subdirectories passing each file found into usp, for analysis. Even though there are files that are not
pertinent for USB device data, usp will look at all files passed in and if it recognizes the file, it will then

Copyright © TZWorks LLC Apr 25, 2025 Page 15

try to parse it and merge any USB device data found into an overall report. In this case, we are
formatting the report to be a Log2timeline CSV report named ‘out.csv’.

If one cannot use the -pipe option, one can use the experimental -enumdir option, which has similar
functionality with more control. The -enumdir option takes as its parameter the folder to start with. It
also allows one to specify the number of subdirectories to evaluate using the -num_subdirs <#> sub-
option.

3.7 Processing USB Artifacts from an externally mounted drive

This option is for the cases where you have an external hard drive and you want to analyze it without
imaging it. In this case, one can put the hard drive under analysis in an external hard drive docking
station with an interface to a write blocker and mount it as a separate volume. The syntax available
allows one to access the drive in one of two ways, either as a mounted volume or as a mounted drive.
The syntax for a mounted volume is: -partition <volume letter>. The syntax for a mounted drive

is -drivenum <drive #> -offset <system volume offset>. The first is the easiest to use while the second
forces the USB analysis to be directed to a particular volume offset. The output options are the same as
in the previous use-cases.

3.8 Pulling USB Artifacts from a Monolithic VMWare NTFS image.

Occasionally, it is useful to analyze a VMWare image, both from a forensics standpoint as well as from a
testing standpoint. When analyzing different operating systems, and different configurations, a virtual
machine is extremely useful in testing out different boundary conditions. This option is still considered
experimental since it has only been tested on a handful of configurations. Furthermore, this option is
limited to monolithic type VMWare images versus split images. In VMWare, the term split image means
the volume is separated into multiple files, while the term monolithic virtual disk is defined to be a
virtual disk where everything is kept in one file. There may be more than one VMDK file in a monolithic
architecture, where each monolithic VMDK file would represent a separate snapshot. More information
about the monolithic virtual disk architecture can be obtained from the VMWare website
(www.vmware.com).

When working with virtual machines, the capability to handle snapshot images is important. When
processing a VMWare snapshot, one needs to include the parent snapshot/image as well as any
descendants.

usp can handle multiple VMDK files to accommodate a snapshot and its descendants, by separating
multiple filenames with a pipe delimiter and enclosing the expression in double quotes. In this case,
each filename represents a segment in the inheritance chain of VMDK files (eg. -vmdk "<VMWare NTFS
virtual disk-1> | .. | <VMWare NTFS virtual disk-x>"). To aid the user in figuring out exactly the chain of
descendant images, usp can take any VMDK file (presumably the VMDK of the snapshot one wishes to
analyze) and determine what the descendant chain is. Finally, usp will suggest a chain to use.

Copyright © TZWorks LLC Apr 25, 2025 Page 16

http://www.vmware.com/

Below is an example of selecting the VMDK snapshot image file of Win7UItx64-000002.vmdk (yellow
box). Since the chain is incomplete, usp responds with what the dependencies are (shown in the red
box), and then gives the user a suggested syntax to use for the command line to process this snapshot.

&8 Administrator: Command Prompt

C:Ndunpouspb4 ~-umdk

License is authenticated and registered to David Tomczak; TZWorks.
run tine: 16/710./2013 16:26:31 [UTC)
cndline: uspb4 —vndk E:Numware\WinZultx64\Win?U 1t x64-0080002 .undk

> vadk file: E:Nvmware\UinZultx64\Win7Ultx64-0080802 .undk
depends on parent undk “"winZultxb64.undk"

suggested array: vadk "E:\unwvare\WinZultx64\Win7U 1t x64-000002 .vndk | E:“\unwvare'
MinZultxbd \winZultxt4.vndk"

Repeating the command using the suggested chain of VMDK files, usp analyzes the chain, verifies it is
valid, and if successful, outputs the results of the USB statistics for this snapshot of the NTFS volume.

4 Summary of all Options
The options labeled as 'Extra' require a separate license for them to be unlocked.

Option Description

Outputs the data fields delimited by commas. Since filenames can have
commas, to ensure the fields are uniquely separated, any commas in the

-csv
filenames get converted to spaces.
_csvI2t Outputs the data fields in accordance with the log2timeline format.
Verbose output. This option will output the parsed data as multiple lines for
v one record inputted.
Use the specified system hive during the parsing. Syntax is
_sys -sys <system hive>. To specify multiple system hives, use the syntax:
-sys "<hivel> [< hive2> [...”.
Use the specified software hive during the parsing. Syntax is
sw -sw <software hive>. To specify multiple software hives, use the syntax:

-sw "<hivel> | < hive2> [...".

Copyright © TZWorks LLC Apr 25, 2025 Page 17

-user

-setupapi

-amcache

-evtx

-pipe

-enumdir

-livesys

-inc_regback

-partition

-vmdk

Use the specified user hive(s) during the parsing. Syntax is
-user <user hive>. To specify multiple user hives, use the syntax:
-user "<user hivel> | <user hive2> [..."

Use the specified setup API log during the parsing. Syntax is
-setupapi <logfile>. To specify multiple user setup API logs, use the
syntax: -setupapi "<log1> | <log2> [..."

Use the specified AmCache hive during the parsing. Syntax is -amcache

<hive>.

Use the specified event log(s) during the parsing. Syntax is -evtx <log>. To
specify multiple evtx logs, use the syntax: -evtx "<log1> | <log2> | ...".

This is an experimental option. Used to pipe files into the tool via STDIN
(standard input). Tool will pull in all files first and begin parsing after last file
is inputted. The set of files will be processed in one session. There are
naming restrictions for the files that are processed. Specifically: (a) System
hives must have the sequence of letters "system" in the name to be
recognized as a system hive. (b) Software hives must have the sequence of
letters "software" in the name to be recognized as a software hive. (c)
ntuser.dat hives must have the sequence of letters “user" in the name to be
recognized as a ntuser.dat hive; and (d) setupapi.[dev].log files must have
the sequence of letters "setup" in the name to be recognized as a log file.

As long as the each of the respective artifact files has the requisite
sequence of letters, then any other letters can go before or after the
sequence.

Experimental. Used to process files within a folder and/or subfolders. Each
file is parsed in sequence. The syntax is -enumdir <folder> -num_subdirs
<#>.

Pull USB stats on the current system
Tells usp to also look at the backup system and software hives as well as the
primary system and software hives. The output will merge the data

appropriately.

Extract artifacts from a mounted Windows volume. The syntax is

-partition <drive letter>.

Extract artifacts from a VMWare monolithic NTFS formatted volume. The

Copyright © TZWorks LLC Apr 25, 2025 Page 18

-drivenum

-image

-Vss

-no_whitespace

-csv_separator

-dateformat

-timeformat

syntax is -vmdk <disk name>. For a collection of VMWare disks that include

snapshots, one can use the following syntax:
-vmdk "<disk1> | <disk2> | ..."

Extract artifacts from a mounted disk specified by a drive number and
volume offset. The syntax is -drivenum <#> -offset <volume offset>

Extract USB artifacts from a volume specified by an image and volume
offset. The syntax is -image <filename> -offset <volume offset>

Experimental. Extract USB data from Volume Shadow to use for usp to
parse into a report. The syntax is -vss <index number of shadow copy>. Only
applies to Windows Vista, Win7, Win8 and beyond. Does not apply to
Windows XP.

Used in conjunction with -csv option to remove any whitespace between
the field value and the CSV separator.

Used in conjunction with the -csv option to change the CSV separator from
the default comma to something else. Syntax is -csv_separator "[" to change
the CSV separator to the pipe character. To use the tab as a separator, one
can use the -csv_separator "tab"” OR -csv_separator "\t" options.

Output the date using the specified format. Default behavior is -dateformat
"yyyy-mm-dd". Using this option allows one to adjust the format to
mm/dd/yy, dd/mm/yy, etc. The restriction with this option is the forward
slash (/) or dash (-) symbol needs to separate month, day and year and the
month is in digit (1-12) form versus abbreviated name form.

Output the time using the specified format. Default behavior is
-timeformat "hh:mm:ss.xxx" One can adjust the format to microseconds,
via "hh:mm:ss.xxxxxx" or nanoseconds, via "hh:mm:ss.xxxxxxxxx", or no
fractional seconds, via "hh:mm:ss". The restrictions with this option is a
colon (:) symbol needs to separate hours, minutes and seconds, a period (.)
symbol needs to separate the seconds and fractional seconds, and the
repeating symbol 'x' is used to represent number of fractional seconds.
(Note: the fractional seconds applies only to those time formats that have
the appropriate precision available. The Windows internal filetime has, for
example, 100 nsec unit precision available. The DOS time format and the
UNIX 'time_t' format, however, have no fractional seconds). Some of the
times represented by this tool may use a time format without fractional
seconds, and therefore, will not show a greater precision beyond seconds

Copyright © TZWorks LLC Apr 25, 2025 Page 19

when using this option.

pair_datetime Output the date/time as 1 field vice 2 for csv option
The default behavior of usp is to try to pull data on those USB devices that
store data. Typically, this are labeled as USBSTOR devices. If one wants to
expand the data returned to be all USB devices, use this switch. Keep in
-all_ush_devices mind every USB device that was connected to the computer will be
displayed, including: HID (human interface devices, like mice and
keyboards), USBHUBs, and other non-USBSTOR devices.

Added for the evtx logs. The default behavior is to use hex for numbers.
-base10 This says to use basel0 for evtx records numbers and other related data in

the Eventlogs.

Experimental Option. This switch will display any additional timestamps

found or derived. This option will also force the -pair_datetime option to
-show_other_times 3]|ow rendering of multiple timestamps within a CSV field. Multiple

timestamps in a field are delimited by semicolons.

Experimental Option. This switch will display which artifact files
-show_files_used contributed to a specific device report data.

Experimental Option. Tells the tool to evaluate USB artifacts in the evtx
-use_eventlogs type logs. This option is implied when using the -evtx or -pipe options.

Experimental Option. When looking at evtx logs, group events into intervals
separated byte # seconds. The default is 2 seconds. This option also affects

-event_res

the SetupAPl.log data similarly. Syntax is: -event_res <# secs>

All output is in Unicode UTF-8 format. If desired, one can prefix an UTF-8
-utf8_bom byte order mark to the output using this option.

5 Authentication and the License File

This tool has authentication built into the binary. The primary authentication mechanism is the digital
X509 code signing certificate embedded into the binary (Windows and macQOS).

The other mechanism is the runtime authentication, which applies to all the versions of the tools
(Windows, Linux and macOS). The runtime authentication ensures that the tool has a valid license. The

Copyright © TZWorks LLC Apr 25, 2025 Page 20

license needs to be in the same directory of the tool for it to authenticate. Furthermore, any
modification to the license, either to its name or contents, will invalidate the license.

5.1 Limited versus Demo versus Full in the tool’s Output Banner

The tools from TZWorks will output header information about the tool's version and whether it is
running in limited, demo or full mode. This is directly related to what version of a license the tool
authenticates with. The limited and demo keywords indicates some functionality of the tool is not
available, and the full keyword indicates all the functionality is available. The lacking functionality in the
limited or demo versions may mean one or all of the following: (a) certain options may not be available,
(b) certain data may not be outputted in the parsed results, and (c) the license has a finite lifetime
before expiring.

6 Conclusions

usp is an example of a command line tool used to automate gathering and reporting on USB device
statistics for Windows operating systems. The tool can be run on either a live Windows system or in an
off-line mode. The off-line mode has binaries that can run on Windows, Linux or Mac OS-X. As new
Windows artifacts are discovered for USB statistics, they can be easily incorporated into usp’s existing,
extensible architecture.

7 References

=

Windows Forensic Analysis DVD Toolkit, Harlan Carvey

Various forensic artifacts discussed in Computer Forensic Essentials from SANS Institute,
http://forensics.sans.org

TZWorks LLC software libraries to parse various Windows’ internals. www.tzworks.com
Various Microsoft Technet articles

VMWare Virtual Disk Format 1.1 Technical Note, www.vmware.com

SetupAPI logs examined include: setupapi.dev.log, setupapi.dev.yyymmdd_hhmmss.log,
setupapi.upgrade.log, and setupapi.setup.log.

7. Eventlogs examined include: Microsoft-Windows-DriverFrameworks-
UserMode%40perational.evtx, Microsoft-Windows-Kernel-PnP%4Configuration.evtx, and
Microsoft-Windows-Partition%4-Diagnostic.evtx.

N

oukWw

Copyright © TZWorks LLC Apr 25, 2025 Page 21

http://forensics.sans.org/
file:///F:/workarea/class_v2/win32_projects/usbscan/tzbundle/www.tzworks.net
http://www.vmware.com/

	1 Introduction
	2 Which Windows artifacts are used
	2.1 ReadyBoost Log
	2.2 Event Logs
	2.3 Other data that is available

	3 Overview of the options
	3.1 Processing USB Artifacts from a Live Windows System
	3.2 Handling the primary and backup hives
	3.3 Handling Volume Shadows from a Live System
	3.4 Processing USB Artifacts from a ‘dd’ image of an NTFS disk
	3.5 Processing USB Artifacts from a ‘dd’ image of an NTFS volume
	3.6 Processing USB Artifacts off-line from extracted components
	3.6.1 Specifying separate artifacts
	3.6.2 Specifying a folder of artifacts

	3.7 Processing USB Artifacts from an externally mounted drive
	3.8 Pulling USB Artifacts from a Monolithic VMWare NTFS image.

	4 Summary of all Options
	5 Authentication and the License File
	5.1 Limited versus Demo versus Full in the tool’s Output Banner

	6 Conclusions
	7 References

